Selected Publications

Google scholar (79159 citations) , DBLP , arXiv .

Journal: 69

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI): 43

International Journal of Computer Vision (IJCV): 26


  1. Masked channel modeling for bootstrapping visual pre-training
    \(\cdot\) Y. Liu, X. Wang, M. Zhu, Y. Cao, T. Huang, C. Shen.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2024.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  2. End-to-end video text spotting with Transformer
    \(\cdot\) W. Wu, C. Shen, Y. Cai, D. Zhang, Y. Fu, P. Luo, H. Zhou.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2024.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  3. Towards robust monocular depth estimation: a new baseline and benchmark
    \(\cdot\) K. Xian, Z. Cao, C. Shen, G. Lin.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2024.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  4. Scaling up multi-domain semantic segmentation with sentence embeddings
    \(\cdot\) W. Yin, Y. Liu, C. Shen, B. Sun, A. van den Hengel.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2024.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  5. Metric3D v2: a versatile monocular geometric foundation model for zero-shot metric depth and surface normal estimation
    \(\cdot\) M. Hu, W. Yin, C. Zhang, Z. Cai, X. Long, H. Chen, K. Wang, G. Yu, C. Shen, S. Shen.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2024.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  6. Self-supervised 3d scene flow estimation and motion prediction using local rigidity prior
    \(\cdot\) R. Li, C. Zhang, Z. Wang, C. Shen, G. Lin.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2024.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  7. Super vision transformer
    \(\cdot\) M. Lin, M. Chen, Y. Zhang, C. Shen, R. Ji, L. Cao.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2023.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  8. A dynamic feature interaction framework for multi-task visual perception
    \(\cdot\) Y. Xi, H. Chen, N. Wang, P. Wang, Y. Zhang, C. Shen, Y. Liu.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2023.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  9. From open set to closed set: supervised spatial divide-and-conquer for object counting
    \(\cdot\) H. Xiong, H. Lu, C. Liu, L. Liu, C. Shen, Z. Cao.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2023.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  10. SPL-Net: spatial-semantic patch learning network for facial attribute recognition with limited labeled data
    \(\cdot\) Y. Yan, Y. Shu, S. Chen, J. Xue, C. Shen, H. Wang.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2023.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  11. SegViT v2: exploring efficient and continual semantic segmentation with plain vision transformers
    \(\cdot\) B. Zhang, L. Liu, M. Phan, Z. Tian, C. Shen, Y. Liu.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2023.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  12. Single-path bit sharing for automatic loss-aware model compression
    \(\cdot\) J. Liu, B. Zhuang, P. Chen, C. Shen, J. Cai, M. Tan.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  13. SPTS v2: single-point scene text spotting
    \(\cdot\) Y. Liu, J. Zhang, D. Peng, M. Huang, X. Wang, J. Tang, C. Huang, D. Lin, C. Shen, X. Bai, L. Jin.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  14. SC-DepthV3: robust self-supervised monocular depth estimation for dynamic scenes
    \(\cdot\) L. Sun, J. Bian, H. Zhan, W. Yin, I. Reid, C. Shen.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  15. Learning from partially labeled data for multi-organ and tumor segmentation
    \(\cdot\) Y. Xie, J. Zhang, Y. Xia, C. Shen.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  16. Structured binary neural networks for image recognition
    \(\cdot\) B. Zhuang, C. Shen, M. Tan, P. Chen, L. Liu, I. Reid.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2022.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  17. Dynamic convolution for 3D point cloud instance segmentation
    \(\cdot\) T. He, C. Shen, A. van den Hengel.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  18. FCOS: a simple and strong anchor-free object detector
    \(\cdot\) Z. Tian, C. Shen, H. Chen, T. He.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022.
    \(\cdot\) linkbibtexgoogle scholarsemantic scholarproject webpage

  19. Instance and panoptic segmentation using conditional convolutions
    \(\cdot\) Z. Tian, B. Zhang, H. Chen, C. Shen.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  20. Towards accurate reconstruction of 3D scene shape from a single monocular image
    \(\cdot\) W. Yin, J. Zhang, O. Wang, S. Niklaus, S. Chen, Y. Liu, C. Shen.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  21. DeepEMD: differentiable earth mover's distance for few-shot learning
    \(\cdot\) C. Zhang, Y. Cai, G. Lin, C. Shen.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  22. Unsupervised scale-consistent depth learning from video
    \(\cdot\) J. Bian, H. Zhan, N. Wang, Z. Li, L. Zhang, C. Shen, M. Cheng, I. Reid.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2021.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  23. Joint classification and regression for visual tracking with fully convolutional Siamese networks
    \(\cdot\) Y. Cui, D. Guo, Y. Shao, Z. Wang, C. Shen, L. Zhang, S. Chen.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2021.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  24. Exploring the capacity of an orderless box discretization network for multi-orientation scene text detection
    \(\cdot\) Y. Liu, T. He, H. Chen, X. Wang, C. Luo, S. Zhang, C. Shen, L. Jin.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2021.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  25. NAS-FCOS: efficient search for object detection architectures
    \(\cdot\) N. Wang, Y. Gao, H. Chen, P. Wang, Z. Tian, C. Shen, Y. Zhang.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2021.
    \(\cdot\) bibtexgoogle scholarsemantic scholarproject webpage

  26. A dual-attention-guided network for ghost-free high dynamic range imaging
    \(\cdot\) Q. Yan, D. Gong, Q. Shi, A. van den Hengel, C. Shen, I. Reid, Y. Zhang.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2021.
    \(\cdot\) bibtexgoogle scholarsemantic scholarproject webpage

  27. BiSeNet v2: bilateral network with guided aggregation for real-time semantic segmentation
    \(\cdot\) C. Yu, C. Gao, J. Wang, G. Yu, C. Shen, N. Sang.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2021.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  28. Memory-efficient hierarchical neural architecture search for image restoration
    \(\cdot\) H. Zhang, Y. Li, H. Chen, C. Gong, Z. Bai, C. Shen.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2021.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  29. Auto-rectify network for unsupervised indoor depth estimation
    \(\cdot\) J. Bian, H. Zhan, N. Wang, T. Chin, C. Shen, I. Reid.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  30. ABCNet v2: adaptive bezier-curve network for real-time end-to-end text spotting
    \(\cdot\) Y. Liu, C. Shen, L. Jin, T. He, P. Chen, C. Liu, H. Chen.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  31. Towards end-to-end text spotting in natural scenes
    \(\cdot\) P. Wang, H. Li, C. Shen.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  32. PAN++: towards efficient and accurate end-to-end spotting of arbitrarily-shaped text
    \(\cdot\) W. Wang, E. Xie, X. Li, X. Liu, D. Liang, Z. Yang, T. Lu, C. Shen.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  33. SOLO: a simple framework for instance segmentation
    \(\cdot\) X. Wang, R. Zhang, C. Shen, T. Kong, L. Li.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  34. Virtual normal: enforcing geometric constraints for accurate and robust depth prediction
    \(\cdot\) W. Yin, Y. Liu, C. Shen.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  35. Effective training of convolutional neural networks with low-bitwidth weights and activations
    \(\cdot\) B. Zhuang, J. Liu, M. Tan, L. Liu, I. Reid, C. Shen.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  36. Separating content from style using adversarial learning for recognizing text in the wild
    \(\cdot\) C. Luo, Q. Lin, Y. Liu, L. Jin, C. Shen.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2020.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  37. Improving generative adversarial networks with local coordinate coding
    \(\cdot\) J. Cao, Y. Guo, Q. Wu, C. Shen, J. Huang, M. Tan.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  38. Adversarial learning of structure-aware fully convolutional networks for landmark localization
    \(\cdot\) Y. Chen, C. Shen, H. Chen, X. Wei, L. Liu, J. Yang.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020.
    \(\cdot\) arXivlinkbibtexgoogle scholarsemantic scholar

  39. Structured knowledge distillation for dense prediction
    \(\cdot\) Y. Liu, C. Shun, J. Wang, C. Shen.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020.
    \(\cdot\) arXivlinkbibtexgoogle scholarsemantic scholarproject webpage

  40. Index networks
    \(\cdot\) H. Lu, Y. Dai, C. Shen, S. Xu.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020.
    \(\cdot\) arXivlinkbibtexgoogle scholarsemantic scholarproject webpage

  41. Ordered or orderless: a revisit for video based person re-identification
    \(\cdot\) L. Zhang, Z. Shi, J. Zhou, M. Cheng, Y. Liu, J. Bian, Z. Zeng, C. Shen.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020.
    \(\cdot\) arXivlinkbibtexgoogle scholarsemantic scholarproject webpage

  42. Plenty is plague: fine-grained learning for visual question answering
    \(\cdot\) Y. Zhou, R. Ji, J. Su, X. Sun, D. Meng, Y. Gao, C. Shen.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020.
    \(\cdot\) linkbibtexgoogle scholarsemantic scholar

  43. Adaptive importance learning for improving lightweight image super-resolution network
    \(\cdot\) L. Zhang, P. Wang, C. Shen, L. Liu, W. Wei, Y. Zhang, A. van den Hengel.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2019.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  44. RefineNet: multi-path refinement networks for dense prediction
    \(\cdot\) G. Lin, F. Liu, A. Milan, C. Shen, I. Reid.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2019.
    \(\cdot\) linkbibtexgoogle scholarsemantic scholarproject webpage

    1. Pytorch code is here.

  45. Cluster sparsity field: an internal hyperspectral imagery prior for reconstruction
    \(\cdot\) L. Zhang, W. Wei, Y. Zhang, C. Shen, A. van den Hengel, Q. Shi.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2018.
    \(\cdot\) pdfbibtexgoogle scholarsemantic scholar

  46. Ordinal constraint binary coding for approximate nearest neighbor search
    \(\cdot\) H. Liu, R. Ji, J. Wang, C. Shen.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2018.
    \(\cdot\) pdfbibtexgoogle scholarsemantic scholar

  47. FVQA: fact-based visual question answering
    \(\cdot\) P. Wang, Q. Wu, C. Shen, A. Dick, A. van den Hengel.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2018.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  48. Structured learning of binary codes with column generation for optimizing ranking measures
    \(\cdot\) G. Lin, F. Liu, C. Shen, J. Wu, H. Shen.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2017.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  49. Exploring context with deep structured models for semantic segmentation
    \(\cdot\) G. Lin, C. Shen, A. van den Hengel, I. Reid.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2017.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  50. Cross-convolutional-layer pooling for image recognition
    \(\cdot\) L. Liu, C. Shen, A. van den Hengel.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2017.
    \(\cdot\) arXivlinkbibtexgoogle scholarsemantic scholar

  51. Compositional model based Fisher vector coding for image classification
    \(\cdot\) L. Liu, P. Wang, C. Shen, L. Wang, A. van den Hengel, C. Wang, H. Shen.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2017.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  52. Image captioning and visual question answering based on attributes and external knowledge
    \(\cdot\) Q. Wu, C. Shen, P. Wang, A. Dick, A. van den Hengel.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2017.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  53. Mining mid-level visual patterns with deep CNN activations
    \(\cdot\) Y. Li, L. Liu, C. Shen, A. van den Hengel.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2016.
    \(\cdot\) arXivlinkbibtexgoogle scholarsemantic scholarproject webpage

  54. Efficient semidefinite branch-and-cut for MAP-MRF inference
    \(\cdot\) P. Wang, C. Shen, A. van den Hengel, P. Torr.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2016.
    \(\cdot\) arXivlinkbibtexgoogle scholarsemantic scholar

  55. Unsupervised feature learning for dense correspondences across scenes
    \(\cdot\) C. Zhang, C. Shen, T. Shen.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2016.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  56. Online metric-weighted linear representations for robust visual tracking
    \(\cdot\) X. Li, C. Shen, A. Dick, Z. Zhang, Y. Zhuang.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2016.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  57. Learning depth from single monocular images using deep convolutional neural fields
    \(\cdot\) F. Liu, C. Shen, G. Lin, I. Reid.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2016.
    \(\cdot\) arXivlinkbibtexgoogle scholarsemantic scholarproject webpage

  58. A generalized probabilistic framework for compact codebook creation
    \(\cdot\) L. Liu, L. Wang, C. Shen.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2016.
    \(\cdot\) arXivlinkbibtexgoogle scholarsemantic scholar

  59. Pedestrian detection with spatially pooled features and structured ensemble learning
    \(\cdot\) S. Paisitkriangkrai, C. Shen, A. van den Hengel.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2016.
    \(\cdot\) arXivlinkbibtexgoogle scholarsemantic scholarproject webpage

  60. Large-scale binary quadratic optimization using semidefinite relaxation and applications
    \(\cdot\) P. Wang, C. Shen, A. van den Hengel, P. Torr.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2016.
    \(\cdot\) arXivlinkbibtexgoogle scholarsemantic scholar

  61. Extrinsic methods for coding and dictionary learning on Grassmann manifolds
    \(\cdot\) M. Harandi, R. Hartley, C. Shen, B. Lovell, C. Sanderson.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2015.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  62. Supervised hashing using graph cuts and boosted decision trees
    \(\cdot\) G. Lin, C. Shen, A. van den Hengel.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2015.
    \(\cdot\) arXivlinkbibtexgoogle scholarsemantic scholarproject webpage

  63. StructBoost: Boosting methods for predicting structured output variables
    \(\cdot\) C. Shen, G. Lin, A. van den Hengel.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2014.
    \(\cdot\) arXivlinkpdfbibtexgoogle scholarsemantic scholar

  64. A hierarchical word-merging algorithm with class separability measure
    \(\cdot\) L. Wang, L. Zhou, C. Shen, L. Liu, H. Liu.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2014.
    \(\cdot\) pdfbibtexgoogle scholarsemantic scholar

  65. Training effective node classifiers for cascade classification
    \(\cdot\) C. Shen, P. Wang, S. Paisitkriangkrai, A. van den Hengel.
    \(\cdot\) International Journal of Computer Vision (IJCV), 2013.
    \(\cdot\) arXivlinkbibtexgoogle scholarsemantic scholar

  66. Incremental learning of 3D-DCT compact representations for robust visual tracking
    \(\cdot\) X. Li, A. Dick, C. Shen, A. van den Hengel, H. Wang.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2013.
    \(\cdot\) arXivlinkpdfbibtexgoogle scholarsemantic scholarproject webpage

  67. UBoost: Boosting with the Universum
    \(\cdot\) C. Shen, P. Wang, F. Shen, H. Wang.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2012.
    \(\cdot\) pdfbibtexgoogle scholarsemantic scholar

  68. On the dual formulation of boosting algorithms
    \(\cdot\) C. Shen, H. Li.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2010.
    \(\cdot\) arXivlinkbibtexgoogle scholarsemantic scholar

  69. Adaptive object tracking based on an effective appearance filter
    \(\cdot\) H. Wang, D. Suter, K. Schindler, C. Shen.
    \(\cdot\) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2007.
    \(\cdot\) linkpdfbibtexgoogle scholarsemantic scholar

    1. Featured article of September issue 2007.

Conference: 184

Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR): 93

Proc. IEEE International Conference on Computer Vision (ICCV): 34

Proc. European Conference on Computer Vision (ECCV): 26

Proc. International Conference on Machine Learning (ICML): 6

Proc. International Conference on Learning Represenations (ICLR): 4

Proc. Advances in Neural Information Processing Systems (NeurIPS): 21


  1. FreeCustom: tuning-free customized image generation for multi-concept composition
    \(\cdot\) G. Ding, C. Zhao, W. Wang, Z. Yang, Z. Liu, H. Chen, C. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’24), 2024.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  2. DiverGen: improving instance segmentation by learning wider data distribution with more diverse generative data
    \(\cdot\) C. Fan, M. Zhu, H. Chen, Y. Liu, W. Wu, H. Zhang, C. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’24), 2024.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  3. Traffic scene parsing through the tsp6k dataset
    \(\cdot\) P. Jiang, Y. Yang, Y. Cao, Q. Hou, M. Cheng, C. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’24), 2024.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  4. FreeCompose: generic zero-shot image composition with diffusion prior
    \(\cdot\) Z. Chen, W. Wang, Z. Yang, Z. Yuan, H. Chen, C. Shen.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’24), 2024.
    \(\cdot\) bibtexgoogle scholarsemantic scholarproject webpage

  5. VisionLLaMA: a unified llama backbone for vision tasks
    \(\cdot\) X. Chu, J. Su, B. Zhang, C. Shen.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’24), 2024.
    \(\cdot\) bibtexgoogle scholarsemantic scholarproject webpage

  6. Matcher: segment anything with one shot using all-purpose feature matching
    \(\cdot\) Y. Liu, M. Zhu, H. Li, H. Chen, X. Wang, C. Shen.
    \(\cdot\) Proc. International Conference on Learning Representations (ICLR’24), 2024.
    \(\cdot\) arXivlinkbibtexgoogle scholarsemantic scholar

  7. De novo protein design using geometric vector field networks
    \(\cdot\) W. Mao, M. Zhu, Z. Sun, S. Shen, L. Wu, H. Chen, C. Shen.
    \(\cdot\) Proc. International Conference on Learning Representations (ICLR’24), 2024.
    \(\cdot\) arXivreviewsbibtexgoogle scholarsemantic scholar

    1. Spotlight presentation.

  8. Object-aware inversion and reassembly for image editing
    \(\cdot\) Z. Yang, D. Gui, W. Wang, H. Chen, B. Zhuang, C. Shen.
    \(\cdot\) Proc. International Conference on Learning Representations (ICLR’24), 2024.
    \(\cdot\) arXivlinkbibtexgoogle scholarsemantic scholarproject webpage

  9. On the trajectory regularity of ODE-based diffusion sampling
    \(\cdot\) D. Chen, Z. Zhou, C. Wang, C. Shen, S. Lyu.
    \(\cdot\) Proc. International Conference on Machine Learning (ICML’24), 2024.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  10. Floating anchor diffusion model for multi-motif scaffolding
    \(\cdot\) K. Liu, S. Shen, W. Mao, X. Jiao, Z. Sun, H. Chen, C. Shen.
    \(\cdot\) Proc. International Conference on Machine Learning (ICML’24), 2024.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  11. Generative active learning for long-tailed instance segmentation
    \(\cdot\) M. Zhu, C. Fan, H. Chen, Y. Liu, W. Mao, X. Xu, C. Shen.
    \(\cdot\) Proc. International Conference on Machine Learning (ICML’24), 2024.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  12. A simple image segmentation framework via in-context examples
    \(\cdot\) Y. Liu, C. Jing, H. Li, M. Zhu, H. Chen, X. Wang, C. Shen.
    \(\cdot\) Proc. Advances in Neural Information Processing Systems (NeurIPS’24), 2024.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  13. Unleashing the potential of the diffusion model in few-shot semantic segmentation
    \(\cdot\) M. Zhu, Y. Liu, Z. Luo, C. Jing, H. Chen, G. Xu, X. Wang, C. Shen.
    \(\cdot\) Proc. Advances in Neural Information Processing Systems (NeurIPS’24), 2024.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  14. Learning conditional attributes for compositional zero-shot learning
    \(\cdot\) Q. Wang, L. Liu, C. Jing, H. Chen, G. Liang, P. Wang, C. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’23), 2023.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  15. Images speak in images: a generalist painter for in-context visual learning
    \(\cdot\) X. Wang, W. Wang, Y. Cao, C. Shen, T. Huang.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’23), 2023.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  16. Zolly: zoom focal length correctly for perspective-distorted human mesh reconstruction
    \(\cdot\) W. Wang, Y. Ge, H. Mei, Z. Cai, Q. Sun, C. Shen, Y. Wang, L. Yang, T. Komura.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’23), 2023.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

    1. Oral presentation.

  17. SegGPT: towards segmenting everything in context
    \(\cdot\) X. Wang, X. Zhang, Y. Cao, W. Wang, C. Shen, T. Huang.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’23), 2023.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  18. Diffumask: synthesizing images with pixel-level annotations for semantic segmentation using diffusion models
    \(\cdot\) W. Wu, Y. Zhao, M. Shou, H. Zhou, C. Shen.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’23), 2023.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  19. Pose-free 3d scene reconstruction with frozen depth models
    \(\cdot\) G. Xu, W. Yin, H. Chen, C. Shen, K. Cheng, F. Zhao.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’23), 2023.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  20. Metric3D: towards zero-shot metric 3d prediction from a single image
    \(\cdot\) W. Yin, C. Zhang, H. Chen, Z. Cai, G. Yu, K. Wang, X. Chen, C. Shen.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’23), 2023.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  21. CTVIS: consistent training for online video instance segmentation
    \(\cdot\) K. Ying, Q. Zhong, W. Mao, Z. Wang, H. Chen, L. Wu, Y. Liu, C. Fan, Y. Zhuge, C. Shen.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’23), 2023.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  22. Robust geometry-preserving depth estimation using differentiable rendering
    \(\cdot\) C. Zhang, W. Yin, G. Yu, Z. Wang, T. Chen, B. Fu, J. Zhou, C. Shen.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’23), 2023.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  23. Generative prompt model for weakly supervised object localization
    \(\cdot\) Y. Zhao, Q. Ye, W. Wu, C. Shen, F. Wan.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’23), 2023.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  24. Segprompt: boosting open-world segmentation via category-level prompt learning
    \(\cdot\) M. Zhu, H. Li, H. Chen, C. Fan, W. Mao, C. Jing, Y. Liu, C. Shen.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’23), 2023.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  25. Conditional positional encodings for vision transformers
    \(\cdot\) X. Chu, Z. Tian, B. Zhang, X. Wang, X. Wei, H. Xia, C. Shen.
    \(\cdot\) Proc. International Conference on Learning Representations (ICLR’23), 2023.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  26. DatasetDM: synthesizing data with perception annotations using diffusion models
    \(\cdot\) W. Wu, Y. Zhao, H. Chen, Y. Gu, R. Zhao, Y. He, H. Zhou, M. Shou, C. Shen.
    \(\cdot\) Proc. Advances in Neural Information Processing Systems (NeurIPS’23), 2023.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  27. Boosting robustness of image matting with context assembling and strong data augmentation
    \(\cdot\) Y. Dai, B. Price, H. Zhang, C. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’22), 2022.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  28. Catching both gray and black swans: open-set supervised anomaly detection
    \(\cdot\) C. Ding, G. Pan, C. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’22), 2022.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  29. RigidFlow: self-supervised scene flow learning on point clouds by local rigidity prior
    \(\cdot\) R. Li, C. Zhang, G. Lin, Z. Wang, C. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’22), 2022.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  30. Retrieval augmented classification for long-tail visual recognition
    \(\cdot\) A. Long, W. Yin, T. Ajanthan, V. Nguyen, P. Purkait, R. Garg, A. Blair, C. Shen, A. van den Hengel.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’22), 2022.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  31. FreeSOLO: learning to segment objects without annotations
    \(\cdot\) X. Wang, Z. Yu, S. De Mello, J. Kautz, A. Anandkumar, C. Shen, J. Alvarez.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’22), 2022.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  32. TopFormer: token pyramid transformer for mobile semantic segmentation
    \(\cdot\) W. Zhang, Z. Huang, G. Yu, T. Chen, G. Luo, X. Wang, W. Liu, C. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’22), 2022.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  33. Efficient decoder-free object detection with transformers
    \(\cdot\) P. Chen, M. Zhang, Y. Shen, K. Sheng, Y. Gao, X. Sun, K. Li, C. Shen.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’22), 2022.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  34. DisCo: remedying self-supervised learning on lightweight models with distilled contrastive learning
    \(\cdot\) Y. Gao, J. Zhuang, S. Lin, H. Cheng, X. Sun, K. Li, C. Shen.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’22), 2022.
    \(\cdot\) bibtexgoogle scholarsemantic scholarproject webpage

    1. Oral presentation.

  35. PointInst3D: segmenting 3D instances by points
    \(\cdot\) T. He, W. Yin, C. Shen, A. van den Hengel.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’22), 2022.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  36. Poseur: direct human pose regression with transformers
    \(\cdot\) W. Mao, Y. Ge, C. Shen, Z. Tian, X. Wang, Z. Wang, A. van den Hengel.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’22), 2022.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  37. PyramidCLIP: hierarchical feature alignment for vision-language model pretraining
    \(\cdot\) Y. Gao, J. Liu, Z. Xu, J. Zhang, K. Li, R. Ji, C. Shen.
    \(\cdot\) Proc. Advances in Neural Information Processing Systems (NeurIPS’22), 2022.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  38. Adv-attribute: inconspicuous and transferable adversarial attack on face recognition
    \(\cdot\) S. Jia, B. Yin, T. Yao, S. Ding, C. Shen, X. Yang, C. Ma.
    \(\cdot\) Proc. Advances in Neural Information Processing Systems (NeurIPS’22), 2022.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  39. Multi-dataset training of transformers for robust action recognition
    \(\cdot\) J. Liang, E. Zhang, J. Zhang, C. Shen.
    \(\cdot\) Proc. Advances in Neural Information Processing Systems (NeurIPS’22), 2022.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  40. Text-adaptive multiple visual prototype matching for video-text retrieval
    \(\cdot\) C. Lin, A. Wu, J. Liang, J. Zhang, W. Ge, W. Zheng, C. Shen.
    \(\cdot\) Proc. Advances in Neural Information Processing Systems (NeurIPS’22), 2022.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  41. Fully convolutional one-stage 3D object detection on LiDAR range images
    \(\cdot\) Z. Tian, X. Chu, X. Wang, X. Wei, C. Shen.
    \(\cdot\) Proc. Advances in Neural Information Processing Systems (NeurIPS’22), 2022.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  42. SegViT: semantic segmentation with plain vision transformers
    \(\cdot\) B. Zhang, Z. Tian, Q. Tang, X. Chu, X. Wei, C. Shen, Y. Liu.
    \(\cdot\) Proc. Advances in Neural Information Processing Systems (NeurIPS’22), 2022.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  43. Hierarchical normalization for robust monocular depth estimation
    \(\cdot\) C. Zhang, W. Yin, Z. Wang, G. Yu, B. Fu, C. Shen.
    \(\cdot\) Proc. Advances in Neural Information Processing Systems (NeurIPS’22), 2022.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  44. DENSE: data-free one-shot federated learning
    \(\cdot\) J. Zhang, C. Chen, B. Li, L. Lyu, S. Wu, S. Ding, C. Shen, C. Wu.
    \(\cdot\) Proc. Advances in Neural Information Processing Systems (NeurIPS’22), 2022.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  45. AQD: towards accurate quantized object detection
    \(\cdot\) P. Chen, J. Liu, B. Zhuang, M. Tan, C. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’21), 2021.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

    1. Oral presentation.

  46. Learning affinity-aware upsampling for deep image matting
    \(\cdot\) Y. Dai, H. Lu, C. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’21), 2021.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  47. Graph attention tracking
    \(\cdot\) D. Guo, Y. Shao, Y. Cui, Z. Wang, L. Zhang, C. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’21), 2021.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  48. DyCo3D: robust instance segmentation of 3d point clouds through dynamic convolution
    \(\cdot\) T. He, C. Shen, A. van den Hengel.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’21), 2021.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  49. HCRF-Flow: scene flow from point clouds with continuous high-order CRFs and position-aware flow embedding
    \(\cdot\) R. Li, G. Lin, T. He, F. Liu, C. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’21), 2021.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  50. Generic perceptual loss for modelling structured output dependencies
    \(\cdot\) Y. Liu, W. Yin, Y. Chen, H. Chen, C. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’21), 2021.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  51. FCPose: fully convolutional multi-person pose estimation with dynamic instance-aware convolutions
    \(\cdot\) W. Mao, Z. Tian, X. Wang, C. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’21), 2021.
    \(\cdot\) bibtexgoogle scholarsemantic scholarproject webpage

  52. Feature decomposition and reconstruction learning for effective facial expression recognition
    \(\cdot\) D. Ruan, Y. Yan, S. Lai, Z. Chai, C. Shen, H. Wang.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’21), 2021.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  53. Learning spatial-semantic relationship for facial attribute recognition with limited labeled data
    \(\cdot\) Y. Shu, Y. Yan, S. Chen, J. Xue, C. Shen, H. Wang.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’21), 2021.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  54. BoxInst: high-performance instance segmentation with box annotations
    \(\cdot\) Z. Tian, C. Shen, X. Wang, H. Chen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’21), 2021.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  55. Dense contrastive learning for self-supervised visual pre-training
    \(\cdot\) X. Wang, R. Zhang, C. Shen, T. Kong, L. Li.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’21), 2021.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

    1. Oral presentation.

  56. End-to-end video instance segmentation with Transformers
    \(\cdot\) Y. Wang, Z. Xu, X. Wang, C. Shen, B. Cheng, H. Shen, H. Xia.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’21), 2021.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

    1. Oral presentation.

  57. Learning to recover 3D scene shape from a single image
    \(\cdot\) W. Yin, J. Zhang, O. Wang, S. Niklaus, L. Mai, S. Chen, C. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’21), 2021.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

    1. Listed as one of the Best Paper Candidates, 32 out of about 6000 submissions.

  58. DoDNet: learning to segment multi-organ and tumors from multiple partially labeled datasets
    \(\cdot\) J. Zhang, Y. Xie, Y. Xia, C. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’21), 2021.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  59. FATNN: fast and accurate ternary neural networks
    \(\cdot\) P. Chen, B. Zhuang, C. Shen.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’21), 2021.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  60. Channel-wise knowledge distillation for dense prediction
    \(\cdot\) C. Shu, Y. Liu, J. Gao, L. Xu, C. Shen.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’21), 2021.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  61. Occluded person re-identification with single-scale global representations
    \(\cdot\) C. Yan, G. Pang, J. Jiao, X. Bai, X. Feng, C. Shen.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’21), 2021.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

    1. Oral presentation.

  62. BV-Person: a large-scale dataset for bird-view person re-identification
    \(\cdot\) C. Yan, G. Pang, L. Wang, J. Jiao, X. Feng, C. Shen, J. Li.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’21), 2021.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  63. A simple baseline for semi-supervised semantic segmentation with strong data augmentation
    \(\cdot\) J. Yuan, Y. Liu, C. Shen, Z. Wang, H. Li.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’21), 2021.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  64. Meta navigator: search for a good adaptation policy for few-shot learning
    \(\cdot\) C. Zhang, H. Ding, G. Lin, R. Li, C. Wang, C. Shen.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’21), 2021.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  65. Twins: revisiting the design of spatial attention in vision transformers
    \(\cdot\) X. Chu, Z. Tian, Y. Wang, B. Zhang, H. Ren, X. Wei, H. Xia, C. Shen.
    \(\cdot\) Proc. Advances in Neural Information Processing Systems (NeurIPS’21), 2021.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  66. Dynamic neural representational decoders for high-resolution semantic segmentation
    \(\cdot\) B. Zhang, Y. Liu, Z. Tian, C. Shen.
    \(\cdot\) Proc. Advances in Neural Information Processing Systems (NeurIPS’21), 2021.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  67. BlendMask: top-down meets bottom-up for instance segmentation
    \(\cdot\) H. Chen, K. Sun, Z. Tian, C. Shen, Y. Huang, Y. Yan.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’20), 2020.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

    1. Oral presentation.

  68. ABCNet: arbitrarily-shaped scene text spotting with adaptive Bezier-curve network in real time
    \(\cdot\) Y. Liu, H. Chen, C. Shen, T. He, L. Jin, L. Wang.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’20), 2020.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

    1. Oral presentation.

  69. Self-trained deep ordinal regression for end-to-end video anomaly detection
    \(\cdot\) G. Pang, C. Yan, C. Shen, A. van den Hengel, X. Bai.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’20), 2020.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  70. REVERIE: remote embodied visual referring expression in real indoor environments
    \(\cdot\) Y. Qi, Q. Wu, P. Anderson, X. Wang, W. Wang, C. Shen, A. van den Hengel.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’20), 2020.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

    1. Oral presentation.

  71. NAS-FCOS: fast neural architecture search for object detection
    \(\cdot\) N. Wang, Y. Gao, H. Chen, P. Wang, Z. Tian, C. Shen, Y. Zhang.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’20), 2020.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  72. On the general value of evidence, and bilingual scene-text visual question answering
    \(\cdot\) X. Wang, Y. Liu, C. Shen, C. Ng, C. Luo, L. Jin, C. Chan, A. van den Hengel, L. Wang.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’20), 2020.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  73. PolarMask: single shot instance segmentation with polar representation
    \(\cdot\) E. Xie, P. Sun, X. Song, W. Wang, X. Liu, D. Liang, C. Shen, P. Luo.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’20), 2020.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

    1. Oral presentation.

  74. Context prior for scene segmentation
    \(\cdot\) C. Yu, J. Wang, C. Gao, G. Yu, C. Shen, N. Sang.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’20), 2020.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  75. DeepEMD: few-shot image classification with differentiable earth mover's distance and structured classifiers
    \(\cdot\) C. Zhang, Y. Cai, G. Lin, C. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’20), 2020.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

    1. Oral presentation.

  76. Memory-efficient hierarchical neural architecture search for image denoising
    \(\cdot\) H. Zhang, Y. Li, H. Chen, C. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’20), 2020.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  77. Mask encoding for single shot instance segmentation
    \(\cdot\) R. Zhang, Z. Tian, C. Shen, M. You, Y. Yan.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’20), 2020.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  78. Training quantized neural networks with a full-precision auxiliary module
    \(\cdot\) B. Zhuang, L. Liu, M. Tan, C. Shen, I. Reid.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’20), 2020.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

    1. Oral presentation.

  79. Learning and memorizing representative prototypes for 3D point cloud semantic and instance segmentation
    \(\cdot\) T. He, D. Gong, Z. Tian, C. Shen.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’20), 2020.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  80. Instance-aware embedding for point cloud instance segmentation
    \(\cdot\) T. He, Y. Liu, C. Shen, X. Wang, C. Sun.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’20), 2020.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  81. Weighing counts: sequential crowd counting by reinforcement learning
    \(\cdot\) L. Liu, H. Lu, H. Zou, H. Xiong, Z. Cao, C. Shen.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’20), 2020.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  82. Efficient semantic video segmentation with per-frame inference
    \(\cdot\) Y. Liu, C. Shen, C. Yu, J. Wang.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’20), 2020.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  83. Conditional convolutions for instance segmentation
    \(\cdot\) Z. Tian, C. Shen, H. Chen.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’20), 2020.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

    1. Oral presentation.

  84. Soft expert reward learning for vision-and-language navigation
    \(\cdot\) H. Wang, Q. Wu, C. Shen.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’20), 2020.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  85. AE TextSpotter: learning visual and linguistic representation for ambiguous text spotting
    \(\cdot\) W. Wang, X. Liu, X. Ji, E. Xie, D. Liang, Z. Yang, T. Lu, C. Shen, P. Luo.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’20), 2020.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  86. Scene text image super-resolution in the wild
    \(\cdot\) W. Wang, E. Xie, X. Liu, W. Wang, D. Liang, C. Shen, X. Bai.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’20), 2020.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  87. SOLO: segmenting objects by locations
    \(\cdot\) X. Wang, T. Kong, C. Shen, Y. Jiang, L. Li.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’20), 2020.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  88. Segmenting transparent objects in the wild
    \(\cdot\) E. Xie, W. Wang, W. Wang, M. Ding, C. Shen, P. Luo.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’20), 2020.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  89. Representative graph neural network
    \(\cdot\) C. Yu, Y. Liu, C. Gao, C. Shen, N. Sang.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’20), 2020.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  90. SOLOv2: dynamic and fast instance segmentation
    \(\cdot\) X. Wang, R. Zhang, T. Kong, L. Li, C. Shen.
    \(\cdot\) Proc. Advances in Neural Information Processing Systems (NeurIPS’20), 2020.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  91. Knowledge adaptation for efficient semantic segmentation
    \(\cdot\) T. He, C. Shen, Z. Tian, D. Gong, C. Sun, Y. Yan.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’19), 2019.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  92. Visual question answering as reading comprehension
    \(\cdot\) H. Li, P. Wang, C. Shen, A. van den Hengel.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’19), 2019.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  93. Fast neural architecture search of compact semantic segmentation models via auxiliary cells
    \(\cdot\) V. Nekrasov, H. Chen, C. Shen, I. Reid.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’19), 2019.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  94. Decoders matter for semantic segmentation: data-dependent decoding enables flexible feature aggregation
    \(\cdot\) Z. Tian, T. He, C. Shen, Y. Yan.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’19), 2019.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  95. Neighbourhood watch: referring expression comprehension via language-guided graph attention networks
    \(\cdot\) P. Wang, Q. Wu, J. Cao, C. Shen, L. Gao, A. vanden Hengel.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’19), 2019.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  96. Associatively segmenting instances and semantics in point clouds
    \(\cdot\) X. Wang, S. Liu, X. Shen, C. Shen, J. Jia.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’19), 2019.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  97. Attention-guided network for ghost-free high dynamic range imaging
    \(\cdot\) Q. Yan, D. Gong, Q. Shi, A. van den Hengel, C. Shen, I. Reid, Y. Zhang.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’19), 2019.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  98. CANet: class-agnostic segmentation networks with iterative refinement and attentive few-shot learning
    \(\cdot\) C. Zhang, G. Lin, F. Liu, R. Yao, C. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’19), 2019.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  99. Mind your neighbours: image annotation with metadata neighbourhood graph co-attention networks
    \(\cdot\) J. Zhang, Q. Wu, J. Zhang, C. Shen, J. Lu.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’19), 2019.
    \(\cdot\) linkbibtexgoogle scholarsemantic scholar

  100. Structured binary neural networks for accurate image classification and semantic segmentation
    \(\cdot\) B. Zhuang, C. Shen, M. Tan, L. Liu, I. Reid.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’19), 2019.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  101. Indices matter: learning to index for deep image matting
    \(\cdot\) H. Lu, Y. Dai, C. Shen, S. Xu.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’19), 2019.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  102. FCOS: fully convolutional one-stage object detection
    \(\cdot\) Z. Tian, C. Shen, H. Chen, T. He.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’19), 2019.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  103. Efficient and accurate arbitrary-shaped text detection with pixel aggregation network
    \(\cdot\) W. Wang, E. Xie, X. Song, Y. Zang, W. Wang, T. Lu, G. Yu, C. Shen.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’19), 2019.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  104. From open set to closed set: counting objects by spatial divide-and-conquer
    \(\cdot\) H. Xiong, H. Lu, C. Liu, L. Liu, Z. Cao, C. Shen.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’19), 2019.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  105. Enforcing geometric constraints of virtual normal for depth prediction
    \(\cdot\) W. Yin, Y. Liu, C. Shen, Y. Yan.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’19), 2019.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  106. Exploiting temporal consistency for real-time video depth estimation
    \(\cdot\) H. Zhang, C. Shen, Y. Li, Y. Cao, Y. Liu, Y. Yan.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’19), 2019.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  107. Self-training with progressive augmentation for unsupervised cross-domain person re-identification
    \(\cdot\) X. Zhang, J. Cao, C. Shen, M. You.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’19), 2019.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  108. Unsupervised scale-consistent depth and ego-motion learning from monocular video
    \(\cdot\) J. Bian, Z. Li, N. Wang, H. Zhan, C. Shen, M. Cheng, I. Reid.
    \(\cdot\) Proc. Advances in Neural Information Processing Systems (NeurIPS’19), 2019.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  109. Multi-marginal wasserstein GAN
    \(\cdot\) J. Cao, L. Mo, Y. Zhang, K. Jia, C. Shen, M. Tan.
    \(\cdot\) Proc. Advances in Neural Information Processing Systems (NeurIPS’19), 2019.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  110. FSRNet: end-to-end learning face super-resolution with facial priors
    \(\cdot\) Y. Chen, Y. Tai, X. Liu, C. Shen, J. Yang.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’18), 2018.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  111. An end-to-end textspotter with explicit alignment and attention
    \(\cdot\) T. He, Z. Tian, W. Huang, C. Shen, Y. Qiao, C. Sun.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’18), 2018.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  112. Visual question answering with memory-augmented networks
    \(\cdot\) C. Ma, C. Shen, A. Dick, Q. Wu, P. Wang, A. van den Hengel, I. Reid.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’18), 2018.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  113. Bootstrapping the performance of webly supervised semantic segmentation
    \(\cdot\) T. Shen, G. Lin, C. Shen, I. Reid.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’18), 2018.
    \(\cdot\) bibtexgoogle scholarsemantic scholarproject webpage

  114. VITAL: visual tracking via adversarial learning
    \(\cdot\) Y. Song, C. Ma, X. Wu, L. Gong, L. Bao, W. Zuo, C. Shen, R. Lau, M. Yang.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’18), 2018.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  115. Repulsion loss: detecting pedestrians in a crowd
    \(\cdot\) X. Wang, T. Xiao, Y. Jiang, S. Shao, J. Sun, C. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’18), 2018.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

    1. Others have implemented our paper: Repulsion loss in SSD and Repulsion loss in RetinaNet.

  116. Are you talking to me? reasoned visual dialog generation through adversarial learning
    \(\cdot\) Q. Wu, P. Wang, C. Shen, I. Reid, A. van den Hengel.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’18), 2018.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  117. Monocular relative depth perception with web stereo data supervision
    \(\cdot\) K. Xian, C. Shen, Z. Cao, H. Lu, Y. Xiao, R. Li, Z. Luo.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’18), 2018.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  118. Towards effective low-bitwidth convolutional neural networks
    \(\cdot\) B. Zhuang, C. Shen, M. Tan, L. Liu, I. Reid.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’18), 2018.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  119. Parallel attention: a unified framework for visual object discovery through dialogs and queries
    \(\cdot\) B. Zhuang, Q. Wu, C. Shen, I. Reid, A. van den Hengel.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’18), 2018.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  120. Learning to predict crisp boundaries
    \(\cdot\) R. Deng, C. Shen, S. Liu, H. Wang, X. Liu.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’18), 2018.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  121. Goal-oriented visual question generation via intermediate rewards
    \(\cdot\) J. Zhang, Q. Wu, C. Shen, J. Zhang, J. Lu, A. van den Hengel.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’18), 2018.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  122. Adversarial learning with local coordinate coding
    \(\cdot\) J. Cao, Y. Guo, Q. Wu, C. Shen, J. Huang, M. Tan.
    \(\cdot\) Proc. International Conference on Machine Learning (ICML’18), 2018.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  123. From motion blur to motion flow: a deep learning solution for removing heterogeneous motion blur
    \(\cdot\) D. Gong, J. Yang, L. Liu, Y. Zhang, I. Reid, C. Shen, A. van den Hengel, Q. Shi.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17), 2017.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  124. Sequential person recognition in photo albums with a recurrent network
    \(\cdot\) Y. Li, G. Lin, B. Zhuang, L. Liu, C. Shen, A. van den Hengel.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17), 2017.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  125. RefineNet: multi-path refinement networks for high-resolution semantic segmentation
    \(\cdot\) G. Lin, A. Milan, C. Shen, I. Reid.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17), 2017.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

    1. Light-weight RefineNet with Pytorch code.

  126. Multi-attention network for one shot learning
    \(\cdot\) P. Wang, L. Liu, C. Shen, Z. Huang, A. van den Hengel, H. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17), 2017.
    \(\cdot\) pdfbibtexgoogle scholarsemantic scholar

  127. The VQA-machine: learning how to use existing vision algorithms to answer new questions
    \(\cdot\) P. Wang, Q. Wu, C. Shen, A. van den Hengel.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17), 2017.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  128. Attend in groups: a weakly-supervised deep learning framework for learning from web data
    \(\cdot\) B. Zhuang, L. Liu, Y. Li, C. Shen, I. Reid.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17), 2017.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  129. Adversarial PoseNet: a structure-aware convolutional network for human pose estimation
    \(\cdot\) Y. Chen, C. Shen, X. Wei, L. Liu, J. Yang.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’17), 2017.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  130. Towards end-to-end text spotting with convolutional recurrent neural networks
    \(\cdot\) H. Li, P. Wang, C. Shen.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’17), 2017.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  131. Semi-global weighted least squares in image filtering
    \(\cdot\) W. Liu, X. Chen, C. Shen, Z. Liu, J. Yang.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’17), 2017.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  132. When unsupervised domain adaptation meets tensor representations
    \(\cdot\) H. Lu, L. Zhang, Z. Cao, W. Wei, K. Xian, C. Shen, A. van den Hengel.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’17), 2017.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  133. Towards context-aware interaction recognition
    \(\cdot\) B. Zhuang, L. Liu, C. Shen, I. Reid.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’17), 2017.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  134. Efficient piecewise training of deep structured models for semantic segmentation
    \(\cdot\) G. Lin, C. Shen, A. van dan Hengel, I. Reid.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16), 2016.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  135. Less is more: zero-shot learning from online textual documents with noise suppression
    \(\cdot\) R. Qiao, L. Liu, C. Shen, A. van den Hengel.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16), 2016.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  136. What's wrong with that object? identifying irregular object from images by modelling the detection score distribution
    \(\cdot\) P. Wang, L. Liu, C. Shen, Z. Huang, A. van den Hengel, H. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16), 2016.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  137. What value do explicit high level concepts have in vision to language problems
    \(\cdot\) Q. Wu, C. Shen, L. Liu, A. Dick, A. van den Hengel.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16), 2016.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  138. Ask me anything: free-form visual question answering based on knowledge from external sources
    \(\cdot\) Q. Wu, P. Wang, C. Shen, A. Dick, A. van den Hengel.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16), 2016.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  139. Fast training of triplet-based deep binary embedding networks
    \(\cdot\) B. Zhuang, G. Lin, C. Shen, I. Reid.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16), 2016.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  140. Image co-localization by mimicking a good detector's confidence score distribution
    \(\cdot\) Y. Li, L. Liu, C. Shen, A. van den Hengel.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’16), 2016.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  141. Cluster sparsity field for hyperspectral imagery denoising
    \(\cdot\) L. Zhang, W. Wei, Y. Zhang, C. Shen, A. van den Hengel, Q. Shi.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’16), 2016.
    \(\cdot\) bibtexgoogle scholarsemantic scholar

  142. Image restoration using very deep fully convolutional encoder-decoder networks with symmetric skip connections
    \(\cdot\) X. Mao, C. Shen, Y. Yang.
    \(\cdot\) Proc. Advances in Neural Information Processing Systems (NeurIPS’16), 2016.
    \(\cdot\) arXivlinkbibtexgoogle scholarsemantic scholarproject webpage

    1. Others have implemented our paper.

  143. Depth and surface normal estimation from monocular images using regression on deep features and hierarchical CRFs
    \(\cdot\) B. Li, C. Shen, Y. Dai, A. van den Hengel, M. He.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15), 2015.
    \(\cdot\) pdfbibtexgoogle scholarsemantic scholar

  144. Mid-level deep pattern mining
    \(\cdot\) Y. Li, L. Liu, C. Shen, A. van den Hengel.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15), 2015.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  145. Deep convolutional neural fields for depth estimation from a single image
    \(\cdot\) F. Liu, C. Shen, G. Lin.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15), 2015.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  146. The treasure beneath convolutional layers: cross convolutional layer pooling for image classification
    \(\cdot\) L. Liu, C. Shen, A. van den Hengel.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15), 2015.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  147. Learning to rank in person re-identification with metric ensembles
    \(\cdot\) S. Paisitkriangkrai, C. Shen, A. van den Hengel.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15), 2015.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  148. Supervised discrete hashing
    \(\cdot\) F. Shen, C. Shen, W. Liu, H. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15), 2015.
    \(\cdot\) pdfbibtexgoogle scholarsemantic scholarproject webpage

  149. Learning graph structure for multi-label image classification via clique generation
    \(\cdot\) M. Tan, Q. Shi, A. van den Hengel, C. Shen, J. Gao, F. Hu, Z. Zhang.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15), 2015.
    \(\cdot\) pdfbibtexgoogle scholarsemantic scholar

  150. Efficient SDP inference for fully-connected CRFs based on low-rank decomposition
    \(\cdot\) P. Wang, C. Shen, A. van den Hengel.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15), 2015.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  151. Hyperspectral compressive sensing using manifold-structured sparsity prior
    \(\cdot\) L. Zhang, W. Wei, Y. Zhang, F. Li, C. Shen, Q. Shi.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’15), 2015.
    \(\cdot\) pdfbibtexgoogle scholarsemantic scholar

  152. Deeply learning the messages in message passing inference
    \(\cdot\) G. Lin, C. Shen, I. Reid, A. van den Hengel.
    \(\cdot\) Proc. Advances in Neural Information Processing Systems (NeurIPS’15), 2015.
    \(\cdot\) arXivpdfbibtexgoogle scholarsemantic scholar

  153. Fast supervised hashing with decision trees for high-dimensional data
    \(\cdot\) G. Lin, C. Shen, Q. Shi, A. van den Hengel, D. Suter.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’14), 2014.
    \(\cdot\) arXivlinkbibtexgoogle scholarsemantic scholarproject webpage

  154. Optimizing ranking measures for compact binary code learning
    \(\cdot\) G. Lin, C. Shen, J. Wu.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’14), 2014.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  155. Strengthening the effectiveness of pedestrian detection with spatially pooled features
    \(\cdot\) S. Paisitkriangkrai, C. Shen, A. van den Hengel.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’14), 2014.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  156. Encoding high dimensional local features by sparse coding based Fisher vectors
    \(\cdot\) L. Liu, C. Shen, L. Wang, A. van den Hengel, C. Wang.
    \(\cdot\) Proc. Advances in Neural Information Processing Systems (NeurIPS’14), 2014.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholar

  157. Learning compact binary codes for visual tracking
    \(\cdot\) X. Li, C. Shen, A. Dick, A. van den Hengel.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’13), 2013.
    \(\cdot\) linkpdfbibtexgoogle scholarsemantic scholar

  158. Inductive hashing on manifolds
    \(\cdot\) F. Shen, C. Shen, Q. Shi, A. van den Hengel, Z. Tang.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’13), 2013.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  159. A fast semidefinite approach to solving binary quadratic problems
    \(\cdot\) P. Wang, C. Shen, A. van den Hengel.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’13), 2013.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

    1. Oral presentation, 60 out of 1870 submissions.

  160. Bilinear programming for human activity recognition with unknown MRF graphs
    \(\cdot\) Z. Wang, Q. Shi, C. Shen, A. van den Hengel.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’13), 2013.
    \(\cdot\) linkpdfbibtexgoogle scholarsemantic scholar

  161. Part-based visual tracking with online latent structural learning
    \(\cdot\) R. Yao, Q. Shi, C. Shen, Y. Zhang, A. van den Hengel.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’13), 2013.
    \(\cdot\) linkpdfbibtexgoogle scholarsemantic scholarproject webpage

  162. Contextual hypergraph modeling for salient object detection
    \(\cdot\) X. Li, Y. Li, C. Shen, A. Dick, A. van den Hengel.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’13), 2013.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  163. A general two-step approach to learning-based hashing
    \(\cdot\) G. Lin, C. Shen, D. Suter, A. van den Hengel.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’13), 2013.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  164. Efficient pedestrian detection by directly optimizing the partial area under the ROC curve
    \(\cdot\) S. Paisitkriangkrai, C. Shen, A. van den Hengel.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’13), 2013.
    \(\cdot\) arXivpdfbibtexgoogle scholarsemantic scholar

  165. Dictionary learning and sparse coding on Grassmann manifolds: an extrinsic solution
    \(\cdot\) M. Harandi, C. Sanderson, C. Shen, B. Lovell.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’13), 2013.
    \(\cdot\) arXivbibtexgoogle scholarsemantic scholarproject webpage

  166. Learning hash functions using column generation
    \(\cdot\) X. Li, G. Lin, C. Shen, A. van den Hengel, A. Dick.
    \(\cdot\) Proc. International Conference on Machine Learning (ICML’13), 2013.
    \(\cdot\) arXivpdfbibtexgoogle scholarsemantic scholarproject webpage

    1. Oral presentation.

  167. Non-sparse linear representations for visual tracking with online reservoir metric learning
    \(\cdot\) X. Li, C. Shen, Q. Shi, A. Dick, A. van den Hengel.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’12), 2012.
    \(\cdot\) arXivpdfbibtexgoogle scholarsemantic scholar

  168. Sharing features in multi-class boosting via group sparsity
    \(\cdot\) S. Paisitkriangkrai, C. Shen, A. van den Hengel.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’12), 2012.
    \(\cdot\) pdfbibtexgoogle scholarsemantic scholar

  169. Robust tracking with weighted online structured learning
    \(\cdot\) R. Yao, Q. Shi, C. Shen, Y. Zhang, A. van den Hengel.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’12), 2012.
    \(\cdot\) pdfbibtexgoogle scholarsemantic scholar

  170. Is margin preserved after random projection?
    \(\cdot\) Q. Shi, C. Shen, R. Hill, A. van den Hengel.
    \(\cdot\) Proc. International Conference on Machine Learning (ICML’12), 2012.
    \(\cdot\) arXivlinkbibtexgoogle scholarsemantic scholar

    1. This work provides an analysis of margin distortion under random projections, the conditions under which margins are preserved, and presents bounds on the margin distortion.

  171. Real-time visual tracking using compressive sensing
    \(\cdot\) H. Li, C. Shen, Q. Shi.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’11), 2011.
    \(\cdot\) pdfbibtexgoogle scholarsemantic scholar

  172. A generalized probabilistic framework for compact codebook creation
    \(\cdot\) L. Liu, L. Wang, C. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’11), 2011.
    \(\cdot\) pdfbibtexgoogle scholarsemantic scholar

  173. A direct formulation for totally-corrective multi-class boosting
    \(\cdot\) C. Shen, Z. Hao.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’11), 2011.
    \(\cdot\) pdfbibtexgoogle scholarsemantic scholar

  174. A scalable dual approach to semidefinite metric learning
    \(\cdot\) C. Shen, J. Kim, L. Wang.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’11), 2011.
    \(\cdot\) pdfbibtexgoogle scholarsemantic scholar

  175. Is face recognition really a compressive sensing problem?
    \(\cdot\) Q. Shi, A. Eriksson, A. van den Hengel, C. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’11), 2011.
    \(\cdot\) pdfbibtexgoogle scholarsemantic scholar

  176. Graph mode-based contextual kernels for robust SVM tracking
    \(\cdot\) X. Li, A. Dick, H. Wang, C. Shen, A. van den Hengel.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’11), 2011.
    \(\cdot\) pdfbibtexgoogle scholarsemantic scholar

  177. Rapid face recognition using hashing
    \(\cdot\) Q. Shi, H. Li, C. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’10), 2010.
    \(\cdot\) pdfbibtexgoogle scholarsemantic scholar

  178. LACBoost and FisherBoost: optimally building cascade classifiers
    \(\cdot\) C. Shen, P. Wang, H. Li.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’10), 2010.
    \(\cdot\) arXivlinkbibtexgoogle scholarsemantic scholar

  179. Efficiently training a better visual detector with sparse eigenvectors
    \(\cdot\) S. Paisitkriangkrai, C. Shen, J. Zhang.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’09), 2009.
    \(\cdot\) arXivlinkbibtexgoogle scholarsemantic scholar

  180. Positive semidefinite metric learning with boosting
    \(\cdot\) C. Shen, J. Kim, L. Wang, A. van den Hengel.
    \(\cdot\) Proc. Advances in Neural Information Processing Systems (NeurIPS’09), 2009.
    \(\cdot\) arXivpdfbibtexgoogle scholarsemantic scholarproject webpage

  181. A fast algorithm for creating a compact and discriminative visual codebook
    \(\cdot\) L. Wang, L. Zhou, C. Shen.
    \(\cdot\) Proc. European Conference on Computer Vision (ECCV’08), 2008.
    \(\cdot\) linkpdfbibtexgoogle scholarsemantic scholar

  182. PSDBoost: matrix-generation linear programming for positive semidefinite matrices learning
    \(\cdot\) C. Shen, A. Welsh, L. Wang.
    \(\cdot\) Proc. Advances in Neural Information Processing Systems (NeurIPS’08), 2008.
    \(\cdot\) pdfbibtexgoogle scholarsemantic scholar

  183. Kernel-based tracking from a probabilistic viewpoint
    \(\cdot\) Q. Nguyen, A. Robles-Kelly, C. Shen.
    \(\cdot\) Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’07), 2007.
    \(\cdot\) linkpdfbibtexgoogle scholarsemantic scholar

  184. Fast global kernel density mode seeking with application to localisation and tracking
    \(\cdot\) C. Shen, M. Brooks, A. van den Hengel.
    \(\cdot\) Proc. IEEE International Conference on Computer Vision (ICCV’05), 2005.
    \(\cdot\) linkpdfbibtexgoogle scholarsemantic scholar

    1. Oral presentation, 45 out of 1200 submissions.